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Abstract

A system of two reaction-diffusion equations with cross-diffusion and quadratic
nonlinearities is considered. The system is a particular case, the well-known
model proposed by Shigesada et al (1979 J. Theor. Biol. 79 83). New non-Lie
ansätze (special-type substitutions) reducing the system to systems of first-
order ordinary differential equations are obtained and applied to find its exact
solutions. Several families of exact solutions are constructed, their asymptotic
behavior is investigated and some biological interpretation of the solutions is
provided. Lie symmetry of this system is also discussed.

PACS numbers: 02.30.Jr, 02.20.−a, 87.10−e

1. Introduction

In 1979, Shigesada et al [1] proposed a mathematical model to describe the densities of two
biological species, which takes into account the heterogeneity of the environment and nonlinear
dispersive movements of the individuals of these populations. The model was developed on
the basis of Morisita’s phenomelogical theory of environmental density and has the form

ut = [(d1 + d11u + d12v)u]xx + (Wxu)x + u(a1 − b1u − c1v),

vt = [(d2 + d21u + d22v)v]xx + (Wxv)x + v(a2 − b2u − c2v),
(1)

where the functions u and v arising in system (1) give the densities of two competing species
in space and time, d1 and d2 denote the diffusion coefficients, d12v and d21u are so-called
cross-diffusion pressures, d11u and d22v are intra-diffusion pressures, a1 and a2 are the
intrinsic growth coefficients, b1 and c2 denote the coefficients of intra-specific competitions,
b2 and c1 denote the coefficients of inter-specific competitions. The function W(x) is so-
called environmental potential, which is assumed to be known. Obviously, this system with
dij = 0, i = 1, 2, j = 1, 2 and W(x) = const reduces to the classical diffusive Lotka–Volterra
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(LV) system. Nevertheless, the authors of [1] assumed that the environmental potential may
be a non-constant function, system (1) with W(x) = const is usually referred to as the
Shigesada–Kawasaki–Teramoto (SKT) system/model.

It was shown by numerical simulations that system (1) possesses solutions describing
coexistence of the species by the spatial segregation of habitat [1]. This kind of coexistence
results from the mutual interferences of the species and the heterogeneity of the environment
and means a steady-state segregation of densities of two competing species. The existence
of the steady-state segregation clearly depends on the initial distributions of u and v and the
parameter values of (1).

Starting from the pioneer works [2, 3], the conditions of existence, uniqueness and global
stability/instability of solutions for the diffusive LV system and SKT system were investigated
by many authors (see [4–7] and the papers cited therein). Nevertheless there are only a few
papers where the relevant exact solutions are constructed in explicit form [8–11]. Note that
a wide range of exact solutions of LV-type systems with power diffusivities (without cross-
diffusion) were constructed in the recently published papers [12, 13].

In this paper system (1) with W(x) = const, i.e. the SKT system

ut = [(d1 + d11u + d12v)u]xx + u(a1 − b1u − c1v),

vt = [(d2 + d21u + d22v)v]xx + v(a2 − b2u − c2v)
(2)

is considered, which is usually studied instead of (1) [4–6]. Depending on the signs
of the parameters ak, bk and ck (k = 1, 2) the SKT system (2) can describe different
types of species interactions (competition, mutualism, prey–predator interaction). Hereafter
dij , i = 1, 2, j = 1, 2 are assumed to be real constants and d2

12 + d2
21 �= 0, i.e., we consider

only the systems with cross-diffusion.
This paper is devoted to constructing new exact solutions of SKT system (2) and to

investigation of their asymptotic behavior. The paper is organized as follows. In section 2,
we use the method of additional generating conditions [14, 15] for constructing non-Lie
ansätze that reduce system (2) to the systems of ordinary differential equations (ODEs). In
section 3, several families of exact solutions are constructed, their asymptotic behavior is
investigated and some biological interpretation of the solutions is suggested. We also show
that the solutions obtained differ from those found in [8–11] and they cannot be obtained by
the standard Lie symmetry method [17–20]. The main results of the paper are summarized in
section 4.

2. Reduction of the SKT system (2) to the ODE systems

System (2) can be rewritten in the form

ut = d1uxx + 2d11uuxx + d12vuxx + d12uvxx + 2d11ux
2 + 2d12uxvx + a1u − b1u

2 − c1uv,

vt = d2vxx + 2d22vvxx + d21uvxx + d21vuxx + 2d22vx
2 + 2d21uxvx + a2v − c2v

2 − b2uv.
(3)

Now one sees that it contains only quadratic nonlinearities and has the similar structure to that,
which has been analyzed in [14]. Hence we can apply the method of additional generating
conditions [14, 15] and use the following conditions:

β1(t)
du

dx
+ β2(t)

d2u

dx2
+

d3u

dx3
= 0,

β1(t)
dv

dx
+ β2(t)

d2v

dx2
+

d3v

dx3
= 0,

(4)
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where β1(t), β2(t) are arbitrary smooth functions at the moment and the variable t is considered
as a parameter. Note one can consider this method as an efficient realization of the more
general approach described in the book [16]. However, it should be stressed that the method
of differential constraints [16] does not suggest any algorithm for how to find appropriate
constraints. Our experience says that the linear ordinary differential equations are the most
relevant constraints in the case of systems of partial differential equations with quadratic
nonlinearities [12, 14, 21].

Depending on β1(t) and β2(t) the general solution of a linear ODE system (4) can have
the forms

u = ϕ0(t) + ϕ1(t)x + ϕ2(t)x
2,

v = ψ0(t) + ψ1(t)x + ψ2(t)x
2,

(5)

if β1 = β2 = 0;

u = ϕ0(t) + ϕ1(t)x + ϕ2(t)e
γ (t)x,

v = ψ0(t) + ψ1(t)x + ψ2(t)e
γ (t)x,

(6)

if β1 = 0;

u = ϕ0(t) + ϕ1(t)e
γ1(t)x + ϕ2(t)e

γ2(t)x,

v = ψ0(t) + ψ1(t)e
γ1(t)x + ψ2(t)e

γ2(t)x,
(7)

if D = β2
2 − 4β1 > 0 and γ1,2(t) = 1

2 (±√
D − β2), γ1 �= γ2;

u = ϕ0(t) + eρx(ϕ1(t) cos γ x + ϕ2(t) sin γ x),

v = ψ0(t) + eρx(ψ1(t) cos γ x + ψ2(t) sin γ x),
(8)

if D < 0 and ρ = − β2

2 , γ =
√−D

2 ;

u = ϕ0(t) + ϕ1(t)e
γ (t)x + xϕ2(t)e

γ (t)x,

v = ψ0(t) + ψ1(t)e
γ (t)x + xψ2(t)e

γ (t)x,
(9)

if D = 0 and γ1 = γ2 = γ .
Let us consider (5)–(9) as ansätze containing unknown functions ϕi(t) and ψi(t), i =

0, 1, 2 and find constraints on the coefficients when these ansätze reduce the SKT system (3)
to the systems of ODEs with respect to ϕi(t) and ψi(t). The straightforward calculations,
which are rather simple but cumbersome, show that this approach works and we present the
results below.

Ansatz (5). The constraints must have the form

a1 = a2 = a, b1 = b2 = b, c1 = c2 = c,

d11c − d12b = d21c − d22b,
(10)

and

ϕ2 = Cϕ1, ψ1 = −b

c
ϕ1, ψ2 = −b

c
Cϕ1, (11)

where C is an arbitrary constant. Applying ansatz (5) with the additional constraints (11) to
the SKT system (3) with the coefficient restrictions (10), one arrives at the system of ODEs

3
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ϕ̇0 = aϕ0 − bϕ2
0 − cϕ0ψ0 + 2C

(
2d11 − b

c
d12

)
ϕ0ϕ1 + 2d12Cϕ1ψ0 + 2d1Cϕ1

+ 2

(
d11 − b

c
d12

)
ϕ2

1 ,

ψ̇0 = aψ0 − cψ2
0 − b2ϕ0ψ0 + 2C

(
2
b

c
d22 − d21

)
ϕ1ψ0 + 2d21C

b

c
ϕ0ϕ1

+ 2d2C
b

c
ϕ1 + 2

(
d22

(
b

c

)2

− b

c
d21

)
ϕ2

1 ,

ϕ̇1 = ϕ1

(
a − bϕ0 − cψ0 + 12C

(
d11 − b

c
d12

)
ϕ1

)
. (12)

Ansatz (7) with γ2 = −γ1 = −γ ∈ R.

Subcase 1. If the constraints

γ 2 = b1

4d11
= c1

4d12
= b2

4d21
= c2

4d22
> 0 (13)

take place then the system of ODEs

ϕ̇0 = a1ϕ0 − b1ϕ
2
0 − c1ϕ0ψ0 − 2b1ϕ1ϕ2 − c1ϕ2ψ1 − c1ϕ1ψ2,

ψ̇0 = a2ψ0 − c2ψ
2
0 − b2ϕ0ψ0 − 2c2ψ1ψ2 − b2ϕ1ψ2 − b2ϕ2ψ1,

ϕ̇1 =
(

a1 +
d1b1

4d11

)
ϕ1 − 3

2
b1ϕ0ϕ1 − 3

4
c1ϕ1ψ0 − 3

4
c1ϕ0ψ1,

ψ̇1 =
(

a2 +
d2b1

4d11

)
ψ1 − 3

2
c2ψ0ψ1 − 3

4
b2ϕ0ψ1 − 3

4
b2ϕ1ψ0,

ϕ̇2 =
(

a1 +
d1b1

4d11

)
ϕ2 − 3

2
b1ϕ0ϕ2 − 3

4
c1ϕ2ψ0 − 3

4
c1ϕ0ψ2,

ψ̇2 =
(

a2 +
d2b1

4d11

)
ψ2 − 3

2
c2ψ0ψ2 − 3

4
b2ϕ0ψ2 − 3

4
b2ϕ2ψ0

(14)

is obtained.

Subcase 2. The constraints are

γ 2 = a2 − a1

d1 − d2
> 0, (d22 − d12)κ = d11 − d21,

κ = −4d11γ
2 − b1

4d12γ 2 − c1
= −4d21γ

2 − b2

4d22γ 2 − c2
= −d11γ

2 − b1

d22γ 2 − c2
�= 0

(15)

and

ϕ2 = Cϕ1, ψ1 = κϕ1, ψ2 = κCϕ1. (16)

The relevant system of ODEs reads as

ϕ̇0 = a1ϕ0 − b1ϕ
2
0 − c1ϕ0ψ0 − 2(b1 + c1κ)Cϕ2

1 ,

ψ̇0 = a2ψ0 − c2ψ
2
0 − b2ϕ0ψ0 − 2

(
c2 +

b2

κ

)
Cκ2ϕ2

1 ,

ϕ̇1 = (a1 + d1γ
2)ϕ1 + (2(d11γ

2 − b1) + (d12γ
2 − c1)κ)ϕ0ϕ1 + (d12γ

2 − c1)ϕ1ψ0.

(17)

Ansatz (8) with ρ = 0.

Subcase 1. The constraints

γ 2 = −b1

4d11
= −c1

4d12
= −b2

4d21
= −c2

4d22
> 0 (18)

4
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lead to the system of ODEs

ϕ̇0 = a1ϕ0 − b1ϕ
2
0 − c1ϕ0ψ0 − 1

2
b1ϕ

2
1 − 1

2
c1ϕ1ψ1 − 1

2
b1ϕ

2
2 − 1

2
c1ϕ2ψ2,

ψ̇0 = a2ψ0 − c2ψ
2
0 − b2ϕ0ψ0 − 1

2
c2ψ

2
1 − 1

2
b2ϕ1ψ1 − 1

2
c2ψ

2
2 − 1

2
b2ϕ2ψ2,

ϕ̇1 =
(

a1 +
d1b1

4d11

)
ϕ1 − 3

2
b1ϕ0ϕ1 − 3

4
c1ϕ1ψ0 − 3

4
c1ϕ0ψ1,

ψ̇1 =
(

a2 +
d2b1

4d11

)
ψ1 − 3

2
c2ψ0ψ1 − 3

4
b2ϕ0ψ1 − 3

4
b2ϕ1ψ0,

ϕ̇2 =
(

a1 +
d1b1

4d11

)
ϕ2 − 3

2
b1ϕ0ϕ2 − 3

4
c1ϕ2ψ0 − 3

4
c1ϕ0ψ2,

ψ̇2 =
(

a2 +
d2b1

4d11

)
ψ2 − 3

2
c2ψ0ψ2 − 3

4
b2ϕ0ψ2 − 3

4
b2ϕ2ψ0.

(19)

Subcase 2. If constraints (16) and

γ 2 = a1 − a2

d1 − d2
> 0, (d22 − d12)κ = d11 − d21,

κ = −4d11γ
2 + b1

4d12γ 2 + c1
= −4d21γ

2 + b2

4d22γ 2 + c2
= −d11γ

2 + b1

d22γ 2 + c2
�= 0.

(20)

take place then the system of ODEs

ϕ̇0 = a1ϕ0 − b1ϕ
2
0 − c1ϕ0ψ0 + (−2d11γ

2 − b1 + (−2d12γ
2 − c1)κ + 2d11γ

2C2

+ 2d12γ
2C2κ)ϕ2

1,

ψ̇0 = a2ψ0 − c2ψ
2
0 − b2ϕ0ψ0 + ((−2d22γ

2 − c2)κ
2 + (−2d21γ

2 − b2)κ

+ 2d21γ
2C2κ + 2d22γ

2C2κ2)ϕ2
1 ,

ϕ̇1 = (a1 − d1γ
2)ϕ1 − (2d11γ

2 + 2b1 + (d12γ
2 + c1)κ)ϕ0ϕ1 − (d12γ

2 + c1)ϕ1ψ0 (21)

is obtained.
Finally, we have established that ansätze (6) and (9) can be applied only in the case

ϕ2 = ψ2 = 0, i.e. if they are reduced to the particular cases of those (5) and (7), respectively.

3. Exact solutions of the SKT system (2) and their properties

To construct exact solutions of the GSKT system (2) one needs to solve the nonlinear systems
of ODE derived in section 2. It is well known that nonlinear ODE systems are integrable only
in exceptional cases. In this section we demonstrate that exact solutions of system (2) can be
constructed in explicit form under further restrictions on its coefficients. It should be stressed
that all exact solutions arising in [8–11] have also been constructed under some restrictions
on coefficients.

We remind the reader that system (2) similarly to the classical LV system possesses four
steady-state solutions

(1) u0 = v0 = 0,

(2) u0 = a1

b1
, v0 = 0,

(3) u0 = 0 v0 = a2

c2
,

(4) u0 = a1c2 − a2c1

b1c2 − b2c1
, v0 = a1b2 − a2b1

b2c1 − b1c2
,

(22)

5
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which play an important role for the qualitative analysis of the SKT system (2). In fact, it
has been proved that (u, v) → (u0, v0) uniformly as t → ∞ if the zero Neumann boundary
conditions and the relevant restrictions on the coefficient of (2) take place (see [4] and the
references therein). It turns out the exact solutions of (2) in an explicit form can be constructed,
which have similar properties. Note we do not apply any boundary conditions to construct
these solutions. It should also be stressed that finding spatially non-homogenous steady-state
solutions of (2) is a difficult problem because one needs to solve the non-integrable system of
two nonlinear second-order ODEs. Nevertheless examples of non-homogenous steady-state
solutions will be found below.

Consider system (14) with the coefficients

b1 = b2 = b,

c1 = c2 = c,

a2 = − c

b
a1,

d12 = d22 = c

b
d11,

d21 = d11,

d2 = d1 + 4d11
a1

b

(
1 +

c

b

)
.

(23)

If one additionally assumes

ψ0 = ϕ0 − a1

b
,

ϕ2 = Cϕ1,

ψ1 = −b

c
ϕ1,

ψ2 = −b

c
Cϕ1,

(24)

then this system is reduced to the integrable system of two ODEs. The general solution of this
system leads to the exact solution

u = 1

K1e− a1
b

(b+c)t + b
a1

+ exp

((
a1 +

bd1

4d11
+

3

4

a1

b
c

)
t

)

×
(

e
a1
b

(b+c)t +
a1

b
K1

)− 3
4

(K2 exp(γ x) + K3 exp(−γ x)),

v = −(
a1
b

)2
K1

e
a1
b

(b+c)t + a1
b
K1

− b

c
exp

((
a1 +

bd1

4d11
+

3

4

a1

b
c

)
t

)

×
(

e
a1
b

(b+c)t +
a1

b
K1

)− 3
4

(K2 exp(γ x) + K3 exp(−γ x)) (25)

of system (2) with restrictions (23). Hereafter K1,K2 and K3 are arbitrary constants.
Asymptotic behavior of solution (25) essentially depends on coefficients (23). There are

four cases and two of them are presented below.

Case 1. If
a1

b
(b + c) > 0, a1 +

bd1

d11
< 0, (26)

then one obtains

(u, v) →
(a1

b
, 0

)
, t → ∞. (27)

6
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Using the biological terminology, it means that the competition between the species u and
v is rather strong and the species u eventually dominate while the species v die. The final
distribution of the species u and v is just case 2 in (22).

Case 2. If
a1

b
(b + c) > 0, d1 = −a1

b
d11, (28)

then

(u, v) →
(

a1

b
+ K2 exp(γ x) + K3 exp(−γ x),−b

c
K2 exp(γ x) − b

c
K3 exp(−γ x)

)
,

t → ∞. (29)

This can be interpreted as an example of the weak competition between the two species.
Such competition admits for as long as possible coexistence of the species (the typical real
example is parasites and their carriers). It should be stressed that stationary solution (29) is a
non-homogenous steady-state solution not belonging to (22).

The next two cases occur under condition a1
b
(b + c) < 0 and are quite similar to the cases

presented above.
One notes that the ODE system (14) can be essentially simplified by setting ϕ2 = ψ2 = 0:

ϕ̇0 = a1ϕ0 − b1ϕ
2
0 − c1ϕ0ψ0,

ψ̇0 = a2ψ0 − c2ψ
2
0 − b2ϕ0ψ0,

ϕ̇1 =
(

a1 +
d1b1

4d11

)
ϕ1 − 3

2
b1ϕ0ϕ1 − 3

4
c1ϕ1ψ0 − 3

4
c1ϕ0ψ1,

ψ̇1 =
(

a2 +
d2b1

4d11

)
ψ1 − 3

2
c2ψ0ψ1 − 3

4
b2ϕ0ψ1 − 3

4
b2ϕ1ψ0.

(30)

Obviously the first two equations from (30) can be separately considered as a subsystem. This
subsystem possesses four steady-state solutions (u0, v0) listed in (22). Substituting any of
them into the third and fourth equations of (30), i.e. setting ϕ0 = u0, ψ0 = v0, we arrive at the
linear ODE system

ϕ̇1 =
(

a1 +
d1b1

4d11
− 3

2
b1u0 − 3

4
c1v0

)
ϕ1 − 3

4
c1u0ψ1,

ψ̇1 = −3

4
b2v0ϕ1 +

(
a2 +

d2b1

4d11
− 3

2
c2v0 − 3

4
b2u0

)
ψ1.

(31)

The form of the general solution of (31) depends essentially on the values of (u0, v0) listed
in (22). The case (u0, v0) = (0, 0) is rather trivial because it leads to the solution

u = K1 exp

((
a1 +

d1b1

4d11

)
t + γ x

)
,

v = K2 exp

((
a2 +

d2b1

4d11

)
t + γ x

)
, γ 2 = b1

4d11
> 0,

(32)

which has very simple behavior. It should be noted that (32) is not a plane wave solution
in the usual sense because the components u and v move with the different speeds provided
a1 + d1b1

4d11
�= a2 + d2b1

4d11
.

A more interesting solution occurs if one uses (u0, v0) from the second case of (22).
Solving (31) with

(
2 − 3 b2

b1

)
a1 + 4a2 + (d2−d1)b1

d11
�= 0 and using ansatz (7) with ϕ2 = ψ2 = 0,

7
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we obtain the solution

u = a1

b1
+

(
K1 exp

((
a2 − 3

4

b2

b1
a1 +

d2b1

4d11

)
t

)
+ K2 exp

((
−1

2
a1 +

d1b1

4d11

)
t

))
exp(γ x),

v = K3 exp

((
a2 − 3

4

b2

b1
a1 +

d2b1

4d11

)
t + γ x

)
(33)

(here K3 = −K1
b1

3a1c1

((
2 − 3 b2

b1

)
a1 + 4a2 + (d2−d1)b1

d11

)
and γ 2 = b1

4d11
> 0) of the SKT system

ut =
[(

d1 + d11u + d11
c1

b1
v

)
u

]
xx

+ u(a1 − b1u − c1v),

vt =
[(

d2 + d11
b2

b1
u + d11

c2

b1
v

)
v

]
xx

+ v(a2 − b2u − c2v).

(34)

The general solution (31) with
(
2 − 3 b2

b1

)
a1 + 4a2 + (d2−d1)b1

d11
= 0 leads to the following

exact solution of the SKT system (34):

u = a1

b1
+ (K2 − K1t) exp

((
−1

2
a1 +

d1b1

4d11

)
t + γ x

)
,

v = K1
4

3

b1

a1c1
exp

((
−1

2
a1 +

d1b1

4d11

)
t + γ x

)
.

(35)

One notes asymptotic behavior of solutions (33) and (35) as follows:

(u, v) →
(

a1

b1
, 0

)
, t → ∞, (36)

if the restrictions 4a2 + d2b1
d11

< 3 b2
b1

a1,
d1b1
d11

< 2a1 and d1b1
d11

< 2a1 take place, respectively. So,
one sees that these solutions describe the strong competition between the species u and v.

In quite a similar way one constructs exact solutions of (2) with the coefficient
constraints (13) using the values of (u0, v0) listed in cases 3 and 4 of (22).

The ODE system (17) can also be solved if one sets the additional restrictions on the
coefficients. In the particular case, setting

b1 = b2 = b, c1 = c2 = c, d12 = d22 = c

b
d11, d21 = d11, (37)

the reduction constraints (15) are satisfied with κ = − b
c

and (17) takes the form

ϕ̇0 = a1ϕ0 − bϕ2
0 − cϕ0ψ0,

ψ̇0 = a2ψ0 − cψ2
0 − bϕ0ψ0,

ϕ̇1 = (a1 + d1γ
2)ϕ1 + (d11γ

2 − b)ϕ0ϕ1 +
c

b
(d11γ

2 − b)ϕ1ψ0.

(38)

Now a particular solution of (38) can be easily constructed and we arrive at the exact
solution

u = K1

e(a2−a1)t + b
a1

K1
+ exp

((
d1γ

2 +
a1

b
d11γ

2

)
t

)

×
(

e(a2−a1)t +
b

a1
K1

) 1
b
d11γ

2−1

(K2 exp(γ x) + K3 exp(−γ x)),

v =
a2
c

e(a2−a1)t

e(a2−a1)t + b
a1

K1
− b

c
exp

((
d1γ

2 +
a1

b
d11γ

2

)
t

)

×
(

e(a2−a1)t +
b

a1
K1

) 1
b
d11γ

2−1

(K2 exp(γ x) + K3 exp(−γ x)), (39)

8
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of the SKT system

ut =
[(

d1 + d11u + d11
c

b
v

)
u

]
xx

+ u(a1 − bu − cv),

vt =
[(

d2 + d11u + d11
c

b
v

)
v

]
xx

+ v(a2 − bu − cv),

(40)

where a2−a1
d1−d2

≡ γ 2 > 0.

Remark 1. Solution (39) with a2 > a1 and b
a1

K1 < 0 blows up for the finite time

tmax = (a2 − a1)
−1 ln | b

a1
K1|. The exact solutions presented below possess the same property

if the appropriate coefficient restrictions take place.

Asymptotic behavior of solution (39) again depends on the coefficients and there are four
cases. However only two of them are essentially different and they are presented below.

Case A. If

a2 < a1, d1 +
a1

b
d11 < 0, (41)

then

(u, v) →
(

a1

b
, 0

)
, t → ∞. (42)

Case B. If

a2 < a1, d1 = −a1

b
d11, (43)

then

(u, v) →
(

a1

b
+ K4 exp(γ x) + K5 exp(−γ x),−b

c
K4 exp(γ x) − b

c
K5 exp(−γ x)

)
,

t → ∞, (44)

where K4 = K2
(

a1
bK1

) a2d11+bd2
a1d11+bd2 ,K5 = K3

(
a1

bK1

) a2d11+bd2
a1d11+bd2 are arbitrary constants because there are

no restrictions on the constants K2 and K3. Obviously one can provide the same biological
interpretation of (42) and (44) as was done above. An example of solution (39), describing
the competition between the two species when the species u eventually dominate while the
species v die, is presented in figure 1. Another solution, possessing asymptotic behavior (44),
is shown in figure 2. This solution approximately describes coexistence of the species by
the spatial segregation of habitat. One sees the steady-state segregation of densities of two
competing species: the species u have favorableness of habitat at a position x situated in the
left-hand side of the interval [0, 0.8], while the species v have one situated in the right-hand
side of this interval.

Consider ODE system (19). It turns out that the coefficient restrictions (23)
and assumptions (24) reduce (19) to an integrable system containing only two ODEs.
Simultaneously constraints (18) are reduced to the form γ 2 = − b

4d11
> 0. Hence the exact

solution

u = 1

K1e− a1
b

(b+c)t + b
a1

+ exp

((
a1 +

bd1

4d11
+

3

4

a1

b
c

)
t

)

×
(

e
a1
b

(b+c)t +
a1

b
K1

)− 3
4

(K2 cos(γ x) + K3 sin(γ x)),

9
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Figure 1. Exact solution (39) with a1 = 3, a2 = 1, b = 1, c = −2, d1 = 2, d2 = 10, d11 =
−2,K1 = 3,K2 = 1,K3 = 1.
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Figure 2. Exact solution (39) with a1 = 3, a2 = 1, b = 1, c = 1, d1 = 2, d2 = 10, d11 =
− 2

3 ,K1 = 3,K2 = 0,K3 = −2.

v = −(
a1
b

)2
K1

e
a1
b

(b+c)t + a1
b
K1

− b

c
exp

((
a1 +

bd1

4d11
+

3

4

a1

b
c

)
t

)

×
(

e
a1
b

(b+c)t +
a1

b
K1

)− 3
4

(K2 cos(γ x) + K3 sin(γ x)) (45)

of the SKT system (40) with a2 = − c
b
a1, d2 = d1 + 4d11

a1
b

(
1 + c

b

)
and b

4d11
= −γ 2 < 0 has

been found.
In contrast to the solutions listed above, this is periodic with respect to the variable x.

Solution (45) under the coefficient restrictions (26) possesses the asymptotic behavior (27).

10
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The coefficient restrictions (28) lead to the periodic asymptote

(u, v) →
(

a1

b
+ K2 cos(γ x) + K3 sin(γ x),−b

c
K2 cos(γ x) − b

c
K3 sin(γ x)

)
, t → ∞.

(46)

This can be interpreted that the densities of two competing species tend (with time) to a
periodical distribution in space. The competition is rather weak and leads to the coexistence
of two species.

Finally, let us consider the ODE system (21) with C = 0. To satisfy the restrictions on
coefficients (20) one may again use coefficients (37) and then system (21) takes the form

ϕ̇0 = a1ϕ0 − bϕ2
0 − cϕ0ψ0,

ψ̇0 = a2ψ0 − cψ2
0 − bϕ0ψ0,

ϕ̇1 = (a1 − d1γ
2)ϕ1 − (d11γ

2 + b)ϕ0ϕ1 − c

b
(d11γ

2 + b)ϕ1ψ0.

(47)

Using the solution of (47), formulae (16) with C = 0 and ansatz (8) with ρ = 0, γ 2 = a1−a2
d1−d2

,
we arrive at the exact solution

u = K1

e(a2−a1)t + b
a1

K1
+ exp

(
−

(
d1γ

2 +
a1

b
d11γ

2

)
t

)

×
(

e(a2−a1)t +
b

a1
K1

)− 1
b
d11γ

2−1

K2 cos(γ x),

v =
a2
c

e(a2−a1)t

e(a2−a1)t + b
a1

K1
− b

c
exp

(
−

(
d1γ

2 +
a1

b
d11γ

2

)
t

)

×
(

e(a2−a1)t +
b

a1
K1

)− 1
b
d11γ

2−1

K2 cos(γ x) (48)

of the SKT system (40) with a1−a2
d1−d2

> 0.
In the case of constraints

a2 < a1, d1 +
a1

b
d11 > 0, (49)

solution (48) possesses the asymptotic behavior (42). An example of solution (48) describing
the competition between the two species when the species u eventually dominate while the
species v die, is presented in figure 3.

In the case of constraints (43), solution (48) possesses the asymptotic behavior

(u, v) →
(

a1

b
+ K3 cos(γ x),−b

c
K3 cos(γ x)

)
, t → ∞, (50)

where K3 = K2
(

a1
bK1

) a2d11+bd2
a1d11+bd2 . So we again obtain a periodical distribution with respect to the

variable x like for solution (45) under restrictions (28). One notes that solution (48) under
restrictions (43) approximately describes coexistence of two species by the spatial segregation
of habitat. An example of solution (48) with such behavior is presented in figure 4.

In conclusion of this section we want to show that the exact solutions obtained above
cannot be found by the methods used in the recent papers [8–11]. The authors of [8, 11]
constructed the solutions starting from the well-known plane wave ansatz

u = ϕ(x − kt), v = ψ(x − kt), (51)

where the constant k means the wave speed. Obviously, the solutions obtained above possess
a more complicated structure. In [9] an additional relation between the functions u and v

11
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Figure 3. Exact solution (48) with a1 = 2, a2 = 1, b = 2, c = 1, d1 = 2, d2 = 1, d11 = 2, K1 =
1, K2 = 1.
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Figure 4. Exact solution (48) with a1 = 2, a2 = 1, b = 1, c = 0.5, d1 = 2, d2 = 1, d11 =
−1,K1 = 2,K2 = −1.

(see formula (49) therein) was used to construct exact solutions of the SKT system (2) with
d11 = d22 = 0. One notes that the solutions found here do not satisfy relation (49) [9].

In [10] the classical Lie symmetry method [17–20] was used to construct exact solutions
of the diffusive LV system. It turns out that application of this approach to the SKT system
(2) is a rather non-trivial and cumbersome task and will be presented in a forthcoming paper.
However, we want to show now that the solutions obtained here cannot be found using Lie
symmetries. In fact, we were able to construct exact solutions only under the coefficient
restrictions presented above. One notes that formulae (25), (39), (45) and (48) present exact
solutions for the SKT system (40), which is a subcase of (2) and contains only seven arbitrary

12
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Table 1. Lie symmetries of system (40).

No. Systems Restrictions Basic operators of MAI

1. ut = [(d11u + c
b
d11v)u]xx + u(a − bu − cv) a �= 0 Pt = ∂t , Px = ∂x ,

vt = [(d11u + c
b
d11v)v]xx + v(2a − bu − cv) Q1 = e−at

×(∂t + a(u − c
b
v)∂u + 2av∂v)

2. ut = [(d + b
a

du + c
a

dv)u]xx + u(a − bu − cv) ad �= 0 Pt , Px ,
vt = [(2d + b

a
du + c

a
dv)v]xx − v(a + bu + cv) Q2 = e−at

×(∂t + 2au∂u + a( a
c

− b
c
u + v)∂v)

3. ut = [(d + d11u + c
b
d11v)u]xx + u(a − bu − cv) ad �= 0 Pt , Px ,

vt = [(d + d11u + c
b
d11v)v]xx + v(a − bu − cv) Ju = u(c∂u − b∂v),

Jv = v(c∂u − b∂v)

4. ut = [(d11u + c
b
d11v)u]xx + u(a − bu − cv) a �= 0 Pt , Px , Ju, Jv ,

vt = [(d11u + c
b
d11v)v]xx + v(a − bu − cv) Q3 = e−at (∂t + a(u∂u + v∂v))

5. ut = [(d11u + c
b
d11v)u]xx − u(bu + cv) Pt , Px , Ju, Jv ,

vt = [(d11u + c
b
d11v)v]xx − v(bu + cv) D = t∂t − u∂u − v∂v

parameters. Now let us formulate a theorem which gives complete information on the Lie
symmetry of (40).

Theorem 1. All possible maximal algebras of invariance (MAI) of system (40) with d11 �= 0
and a2 + b2 + c2 �= 0 are presented in table 1. Any other system of the form (40) either is
reduced by the renaming

u → v

v → u
(52)

to one of those given in table 1 or is invariant under the two-dimensional Lie algebra with the
basic operators Pt = ∂t , Px = ∂x .

Proof. It is based on the standard Lie scheme [17–20] and omitted here because of its
bulk. �

Remark 2. In the case d11 = 0 system (40) is a particular case of the diffusive LV system and
its Lie symmetries were described in [10] and in the case a2 + b2 + c2 = 0 this system is no
longer a reaction-diffusion system but a cross-diffusion system without any reaction terms.

Remark 3. In the cases 3–5 of table 1 the corresponding systems with cross-diffusion can be
reduced to semi-coupled those of the form

wt =
[(

d +
d11

b
w

)
w

]
xx

+ w(a − w),

ut =
[(

d +
d11

b
w

)
u

]
xx

+ u(a − w),

where w = bu + cv. In this system the first equation is the well-known Fisher equation with
nonconstant diffusivity and its exact solutions were found in [22] (in the case d = 0) and [9]
(in the case d �= 0).

Taking into account this theorem one can claim that there are only five cases listed in
table 1 when the Lie method allows one to construct ansätze, which differ from the plane wave

13
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ansatz (51). It turns out that any system arising in these cases is not relevant to those which
we were able to construct exact solutions for. Thus, these solutions cannot be obtained using
the operators arising in table 1.

Let us take, for example, solution (25). One easily notes that this solution cannot be
obtained by using the plane wave ansatz (51) provided K1

1 + K2
2 �= 0 or K1

1 + K2
3 �= 0. On

the other hand, the SKT system (2) with restrictions (23) does not belong to any system from
table 1 (of course, for some correctly-specified values of the parameters a, b, c, d1 and d11 it
can be done but not for arbitrary values). Thus, system (2) with restrictions (23) is invariant
under the two-dimensional Lie algebra with the basic operators Pt = ∂t , Px = ∂x , therefore
ansatz (51) can only be derived. It means that solution (25) is not obtainable by the well-known
Lie machinery. In the quite similar way the same conclusion can be derived for solutions (39),
(45) and (48).

Finally, exact solutions (32), (33) and (35) are also not obtainable by the Lie symmetry
method because the SKT system (34) admits only the two-dimensional Lie algebra 〈Pt , Px〉
provided its coefficients are arbitrary constants. Of course, these solutions with correctly-
specified coefficients (for example, solution (32) for (34) with a1 + d1b1

4d11
= a2 + d2b1

4d11
) can also

be reduced to the form of plane wave solutions (51) but not in the general case.

4. Conclusions

In this paper the method of additional generating conditions [14, 15] was successfully applied
to find exact solutions in the explicit form for the SKT system (2), which was extensively
studied during last few decades. We have established several ansätze reducing systems (2)
to the relevant systems of ODEs if the coefficient of (2) satisfies the appropriate conditions.
Nevertheless the ODE systems obtained are essentially nonlinear, they were solved under
further restrictions on the coefficients arising in (2). Hence several families of exact solutions
of the SKT system (2) were constructed and they are given by the formulae (25), (32), (33),
(35), (39), (45) and (48).

The asymptotic behavior of the solutions obtained was further investigated. We have
established the conditions when these solutions tend (if time t → ∞) to steady-state points
of (2). Moreover, new nonuniform stationary distributions were found (see formulae (29),
(44) and (46)), which are asymptotical limits of solutions (25), (39) and (45), if the relevant
coefficient restrictions are valid. From the theoretical point of view it means that the solutions
obtained (with the relevant coefficient restrictions) are rather stable with respect to sufficiently
small perturbations of the initial profiles generated by them and therefore any perturbed
solution (one can be obtained by numerical simulations) should possess similar asymptotic
properties to the relevant exact solution. From the applicability point of view it means that
such solutions describe typical forms of the competition between the species u and v, which are
predicted by their biological nature. In the particular case, the non-homogenous (nonuniform)
solutions obtained may approximately describe coexistence of two species by the spatial
segregation of habitat (see figures 2 and 4). Of course, the problem how to satisfy the relevant
boundary conditions (typically they are the zero Neumann conditions) is another challenge
and we do not discuss this here.

The work is still in progress. In the particular case, we are going to finish a complete
description of Lie symmetries of the SKT system (2), which is a non-trivial problem since
the system contains 12 arbitrary parameters, and to apply the symmetries obtained for finding
new solutions of this system.
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